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Abstract: Optical interconnects are being considered as a possible solution to the well-
known problems of scaling in VLSI interconnects. Along with enabling higher 
speed interconnects, optics allows the construction of highly connected and 
irregular networks that are streamlined for particular applications. Using these 
networks, it is possible to implement application mappings that allow flexible, 
single-hop communication patterns between processors. This has advantages 
for reduced system latency and power. Such optically connected 
multiprocessors are particularly promising for embedded digital signal 
processing (DSP) applications, which are highly parallel, and typically have 
tight constraints on latency and power consumption. This paper addresses 
novel trade-offs involving communication routing flexibility, power 
consumption, and performance that arise in the context of system synthesis of 
optically-interconnected multiprocessors. We report on experimental results 
that expose these trade-offs, and propose systematic techniques to address 
them efficiently. We demonstrate the performance of these techniques on 
several benchmark examples. 

 

Key words: optical interconnect, scheduling, interconnect synthesis, multi-hop 
communication, low power 

1. INTRODUCTION 

In recent years, optics has played an increasing role in multiprocessor 
systems. Various studies have predicted that the energy consumed by data 
communication will ultimately limit the processing speed in electronic 
processors [8], [10]. Light signals do not suffer from effects such as 
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electromagnetic interference and capacitive effects, which limit electrical 
interconnects. Many research groups have demonstrated optically-connected 
multiprocessor systems (e.g., see [4], [5], [7]). However, relatively little 
work has been done to develop synthesis techniques and automated mapping 
tools to take advantage of such systems. A key advantage of optics for a 
multiprocessor system is that it allows highly parallel data links and a large 
degree of connectivity between processors. This work addresses some 
fundamental issues related to mapping of applications onto optically-
connected systems, particularly for generating low-latency, low-power 
schedules. 

The problem of generation of communication topologies at the system 
level has been examined for bus-based implementations [3], [9]. These 
techniques try to optimize communication between a set of processes, and 
try to minimize the total communication costs. Many techniques have also 
been presented for scheduling application graphs onto multiprocessor 
networks with various fixed topologies (e.g., see [2]). Our work is different 
because we incorporate communication topology synthesis, limited hop 
communication, and optical interconnects which are based on unidirectional 
point-to-point links and give rise to new issues of schedule deadlock and 
communication flexibility.  

2. OPTICALLY CONNECTED SYSTEMS 

 

Figure 1. [FAST-Net prototype system] 

One example of an optically connected system is the FAST-Net prototype 
[5], a high-throughput data-switching concept that uses a reflective optical 
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system to globally interconnect a multi-chip array of processors. The three-
dimensional optical system links each chip directly to every other with a 
dedicated bidirectional parallel data path. This is illustrated in Figure 1 [5]. 
Initiatives such as the DARPA VLSI Photonics Program [13] are pushing 
this technology from multi-chip arrays of processors towards single-chip 
arrays of processors. 

3. TASK GRAPH SCHEDULING 

The computational model used in this work is that of conventional 
acyclic task graphs, in which graph vertices (tasks or nodes) represent 
computations and each edge represents the communication of a packet of 
data from the source task to the sink task. Henceforth in this paper, we refer 
to a task graph representation of an application as an application graph. A 
vast range of scheduling techniques for task graphs has been developed (e.g., 
see [12] for a review of several representative approaches); however, these 
techniques typically assume a fixed communication network, and do not 
systematically take connectivity constraints into account. By connectivity 
constraints, we mean the inability of certain pairs of processors to 
communicate with each other. These constraints arise because it is 
advantageous to configure the schedules in such a way that multi-hop 
communication is minimized, and the relative abundance of communication 
links is used instead to achieve the required communication flexibility.  

One contribution of this paper is to develop a general framework for 
extending arbitrary list scheduling approaches to avoid deadlock, and 
operate efficiently in the presence of connectivity constraints. We also apply 
this framework to jointly streamline the communication network and task 
graph mapping for a given application. This can be used both for minimum-
cost dedicated implementations, and for reconfigurable networks, where the 
goal is to save power consumption by activating a minimal subset of 
available laser-detector pairs. 

4. COMMUNICATION FLEXIBILITY 

One major consequence of single-hop communication schedules is that 
each processor p is restricted to send data to a subset of the set of all 
processors Φ , and to receive data from a (possibly different) subset of Φ . 
If these constraints are not considered, deadlock can easily occur during the 
scheduling process. We define a feasible set of processors ][νF  for a task 
ν  as the largest subset of Φ  on which ν  can be scheduled without 
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deadlock. We have developed an efficient algorithm to determine the 
feasible set of processors ][νF  for all G∈ν  at any point during the 
scheduling process.  

 

 

Figure 2. [Example demonstrating flexibility metric.] 

 We define the communication flexibility (or simply flexibility for short) 
of the system at any point during the scheduling process as the sum of the 
sizes of ][νF  for all G∈ν . The flexibility gives some measure of the 
degree of constraint imposed on all tasks by a given scheduling move. Figure 
2 depicts a simple example of an application graph with six tasks scheduled 
on four processors.  

5. SINGLE-HOP SCHEDULING FOR LOW POWER 

The general class of list scheduling algorithms can easily be adapted to 
produce single-hop (or n-hop) schedules by incorporating our constraint 
algorithm. This is advantageous because it allows us to leverage a large 
library of useful scheduling techniques.  

In list scheduling, a priority list L of tasks is constructed. The priority list  
is a linear ordering ),,,( 21 Vννν K  of the tasks in the application graph 

),( EVG =  such that for any pair of distinct tasks iν  and jν , iν  is to be 
given higher scheduling priority than jν  if and only if ji < . Each task is 
mapped to an available processor as soon as it becomes the highest-priority 
task according to L among all tasks that are ready. This process is repeated 
until all tasks are scheduled. 

The concepts of feasibility and flexibility can be incorporated into the 
general framework of list scheduling by restricting the set of candidate pro-

Partial schedule 1 
A on processor 2 
B on processor 1 
 
Constraint sets 1: 
F[A] = {2} 
F[B] = {1} 
F[G] = {1} 
F[D] = {1,2} 
F[E] = {1,2,3} 
F[C] = {1,2,3} 
Flexibility = 11 

(a) Processor connection.

Partial schedule 2 
A on processor 2 
B on processor 2 
 
Constraint sets 2: 
F[A] = {2} 
F[B] = {2} 
F[G] = {1,2,3} 
F[D] = {1,2,3} 
F[E] = {1,2,3,4} 
F[C] = {1,2,3,4} 
Flexibility = 16 

(b) Application graph. 
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cessors to include only those that are feasible at the given scheduling step, 
and by taking flexibility into account in designing the priority metric through 
which tasks are ordered. 

Single-hop communication is desirable for low power, since every 
communication hop incurs an additional energy cost. However, restricting 
the communication to single-hop reduces the flexibility of the scheduler to 
fewer possible moves in each scheduling step. In general, this would not be 
optimal for producing the lowest makespan schedules. We show in Section 7 
that restricting the schedule to single-hop communication can produce 
significant power savings when compared to multi-hop schedules, while not 
penalizing the makespan significantly.  

If the communication is not constrained to be single hop, some routing 
algorithm must be employed to schedule the interprocessor communication. 
In our experiments, we used a greedy load-based minimal routing algorithm. 
Minimal routing algorithms consider only shortest paths between processors. 
Since each communication hop in an optical interconnect incurs an energy 
cost, shortest path routes are desirable. A weight is assigned to each edge on 
all shortest paths as a function of the change in the relative load that would 
occur if it were to be used by the route. A shortest path from source 
processor to destination processor is then computed with respect to those 
weights. Such algorithms are often employed in multiprocessor systems [1]. 
Although this routing algorithm runs in polynomial time [1], in the context 
of a fixed optimization budget, the time spent computing the routes in a 
multi-hop schedule reduces the number of possible scheduling moves that 
the scheduling algorithm can explore when compared to a single-hop 
schedule. 

6. TPLA ALGORITHM 

 
Realistic optical networks may incorporate relatively high, but not 

necessarily complete (fully connected), levels of connectivity. Even in fully-
connected systems, such as FAST-Net [5], it is still desirable from the 
viewpoint of power and heat dissipation to have a minimal interconnect 
mapping, since for a given application, non-essential transmitters can be 
turned off. In this section, we illustrate how our single-hop scheduling strate-
gies, and the underlying concept of communication flexibility, can be used to 
guide the synthesis of application-specific interconnect structures. The main 
idea here is that for embedded multiprocessors, the interconnect topologies 
should be driven by the specific application mappings that will execute 
across them, and jointly designing the two is advantageous. 
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Specifically, we have developed a greedy, heuristic algorithm, called the 
two-phase link adjustment (TPLA) algorithm, to synthesize an interconnect 
and an associated multiprocessor schedule for a given application. The 
TPLA algorithm starts with a fully connected network, and operates in down 
and up phases. Input to the algorithm is either a makespan constraint for the 
application, or a constraint on the total number of links. 

Each step of the down phase in TPLA removes one link, while each step 
of the up phase adds one link. One step of the down phase consists of 
assigning each existing link a score based on the schedule makespan 
resulting from its removal, and removing the link with the lowest score. A 
history of scores is kept for each link. For the first pass through the down 
phase, ties between links are broken randomly. On subsequent passes, the 
link history is used to break ties. The down phase continues until all the links 
are removed.  

Conversely, one step of the up phase in TPLA consists of assigning a 
score to each missing link based on the makespan resulting from its addition. 
The up phase continues until the network is fully connected. Repeated, 
alternating invocations of down and up phases are executed for some time 
limit (determined by the user), and the best result found is taken. Given a 
makespan constraint, this best result minimizes the number of links. 
Alternatively, given a constraint on the number of links, the best result 
minimizes the makespan. 

7. EXPERIMENTS 

Our techniques for scheduling and interconnection pattern synthesis 
operate in conjunction with a given list scheduling strategy. In these 
experiments, we employed the DLS algorithm [11] as the underlying list 
scheduling strategy, although, as described in Section 5, any list scheduling 
algorithm could have been used.  

We examined a set of DSP application benchmarks and scheduled them 
using two different scheduling modes, one that incorporates only feasibility 
information (to avoid deadlock), and another that takes both feasibility and 
flexibility into account. We refer to these as the feasibility-only and 
feasibility-flexibility modes, respectively. To evaluate the performance 
across a range of connectivity levels, we scheduled the applications onto 
networks with varying degrees of connectivity. We also compared the 
makespan and power of single-hop schedules to that of multi-hop schedules. 
For the multi-hop scheduling, we used the greedy load-based minimal 
routing algorithm discussed earlier. 
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In the feasibility-only mode, the processor P considered for a given task  
ν at each scheduling step was restricted to be in the feasible set ][νF  for ν , 
as described earlier, and no modification was made to the task prioritization 
metric of the underlying list scheduling strategy (DLS). 

In the feasibility-flexibility mode, the processor P considered at each 
scheduling step was again restricted to be in the feasible set for ν ; however, 
whenever two processor assignments for ν  resulted in equal priority levels 

)(νL , where L represents the priority metric of the original DLS algorithm, 
priority was given to the assignment that resulted in a higher value of 
flexibility. In other words, priority was given to assignments that offered 
greater flexibility for future scheduling decisions. 

For each application, we chose a number N of processors, and then 
generated a fully connected network with )1( −NN  links. We scheduled the 
application using both feasibility-only and feasibility-flexibility modes onto 
this network. Next we removed one link from the network at random, and 
again scheduled the application using both scheduling modes. We continued 
this process of removing links until no links remained, resulting with all the 
tasks scheduled on a single processor. We define the relative improvement 
of the feasibility-flexibility mode over the feasibility-only mode by 
comparing the average makespan over all points. 
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Figure 2. [Makespan and communication energy with single-hop and three-hop maximum 
communication] 

Figure 2 compares the makespan and communication energy for single-
hop and three-hop communication for the karp10 application. For this 
application, the single-hop schedule required 24% less communication 
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energy while producing on average a 4% longer makespan than the three-
hop schedule. For this application, the makespan obtained without using the 
flexibility metric was 26% longer than the 1-hop makespan. Table 1 
summarizes this comparison for several other DSP application benchmarks.  

We performed experiments with the following application graphs: fft1, 
irr, fft3, karp10, qmf4, Laplace, sum1, and RBFNN. The fft graphs are 
different implementations of the fast Fourier transform [6]. Karp10 refers to 
the Karplus-Strong music synthesis algorithm with 10 voices (21 nodes); 
qmf4 is a quadrature mirror filter bank (14 nodes). Laplace is a laplace 
transform. Irr is an adaptation of a physics algorithm, and sum1 is an upside 
down binary tree representing the sum of products computation. RBFNN is a 
neural network classifier algorithm. 

Table 1. [Relative makespan improvement obtained by using flexibility information in the 
scheduling process.] 
Application N 1-hop makespan 

improvement 
using flexibility 

Reduction in 
communication 
energy 

Makespan 
penalty for 1-
hop vs. 3-hop 

Fft1 7 30 16 8 
Karp10 6 26 24 4 
Irr 8 17 16 (2) 
Qmf4 7 19 32 3 
Nn16-3-4 8 21 58 2 
Sum1 6 8 1 4 
Laplace 7 23 4 (3) 
Fft2 7 15 12 2 
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Figure 3. [Link synthesis using the TPLA algorithm.] 
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We evaluated the TPLA algorithm on the RFBNN benchmark described 
above. The bottom curve of Figure 3 shows the best makespan achieved for 
each level of connectivity between 0 and fully connected, after one “down” 
phase and one “up” phase. This gives a Pareto curve of the trade-off between 
number of links and makespan for the application. For purposes of compar-
ison, the upper curve of Figure 3 shows the makespan achieved by starting 
with fully connected and randomly removing one link at a time. The TPLA 
algorithm shows a significant improvement (42% relative improvement) 
over random removal, and is thus a promising starting point for developing 
more sophisticated link synthesis methods. More broadly, it demonstrates the 
effectiveness of feasibility- and flexibility-driven scheduling in iterative co-
design of optical interconnection structures. 

8. CONCLUSIONS 

Optical interconnect technology is promising for global communication 
in embedded multiprocessors, since the interconnection patterns can flexibly 
be streamlined and reconfigured to match the target applications. However, 
due to the power consumption characteristics of optical links, it is useful to 
restrict communication across them to single-hop transfers. We have demon-
strated an effective algorithm for determining the set of feasible processors 
that will avoid schedule deadlock in a single-hop schedule, and a useful 
metric, called communication flexibility, for the degree to which a given 
scheduling decision constrains future decisions (in the context of the given 
communication topology).  

We used this algorithm and the flexibility metric in conjunction with the 
DLS algorithm to map several DSP applications across a wide range of 
interconnect topologies. These experiments demonstrated that incorporating 
the flexibility metric into existing scheduling algorithms improves the 
schedule makespan, and that single-hop schedules can significantly reduce 
power consumption of the system. We also demonstrated that these 
scheduling techniques could be used to effectively guide an algorithm for 
jointly synthesizing the interconnection network together with the mapping 
of an application onto the network. 
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